Monatshefte für Chemie Chemical Monthly © Springer-Verlag 1999 Printed in Austria

Synthesis of *Bistrimethylsilylated* Hydroxy Alkynes

Mohammad Bolourtchian¹, Reza Zadmard¹, and Mohammad R. Saidi^{2,*}

¹ Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran

² Chemistry Department, Sharif University of Technology, Tehran, Iran

Summary. The syntheses of several *bis*trimethylsilyl hydroxy alkynes and one *tris*trimethylsilyl hydroxy alkyne are described. Addition of lithium trimethylsilyl acetylide to mono- or *bis*trimethylsilylated aldehydes and ketones afforded compounds **4a–f** in good to moderate yields. The products are mixtures of diastereomers; the diastereoselectivity of the reactions amounts to 53 to 68%.

Keywords: Synthesis; Bistrimethylsilyl hydroxy alkynes.

Synthese bistrimethylsilylierter Hydroxyalkine

Zusammenfassung. Die Synthesen mehrerer *Bis*trimethylsilylhydroxyalkine und eines *Tris*trimethylsilylhydroxyalkins werden beschrieben. Addition von Lithiumtrimethylsilylacetylid an monooder *bis*trimethylsilylierte Aldehyde und Ketone ergab die Verbindungen **4a–f** in guten bis mäßigen Ausbeuten. Die Produkte sind Mischungen von Diastereomeren und entstehen mit Diastereoselektivitäten von 53 bis 68%.

Introduction

Alkynyl alcohols are an important class of compounds [1]. Alkynols comprising the terminal alkynyl carbon protected with a trimethylsilyl (*TMS*) group are conveniently and widely used organic synthons due to their reactivity and large variety of synthetic transformations. The alkynyl group is also a good handle for further transformations [2]. Many of these silylated alkynols are biologically important compounds, combining pharmacological activity with low toxicity. The development of synthetic reactions is an area of active study [3–5]. It is well known that silicon groups can be readily but discriminatively cleaved from carbon atoms. A terminal trimethylsilyl group can be removed selectively in *bis*trimethylsilylated alkynols for further transformation. The syntheses of silylated aldehydes and ketones were reported previously [6–10].

In this paper we wish to report a mild and efficient conversion of silvlated aldehydes and ketones to *bis*trimethylsilvlated alkynols comprising a terminal

^{*} Corresponding author

alkynyl carbon with a *TMS* group. Silylated aldehydes and ketones were prepared by different methods as racemic mixtures.

Results and Discussion

Treatment of a variety of silylated aldehydes or ketones with lithium trimethylsilyl acetylide at room temperature under an atmosphere of argon furnished the expected *bis*trimethylsilylated alkynols 4a-f in good to moderate yields. Both sterically hindered and conjugated silylated aldehydes or ketones as well as

Table 1. Reaction of lithium trimethylsilyl acetylide with silylated aldehydes and ketones

\mathbf{R}^1	Q		\mathbf{R}^1		ОН
R-C-	$-CH - C - R_3$	+ TMS-C≡CLi	 R-C	-сн-	$-C - C \equiv C - TMS$
TMS	R^{1}	$(TMS = Me_3Si)$	TMS	R^2	R^{3}
	1a-f	× 5,	4a-f		

Starting material				Product	Yield (%)	Ratio of diastereomers
R	R^1	R^2	R ³	ŎН		
Ph	Н	Н	Ph	PhCHCH ₂ CC \equiv C $-TMS$ TMS Ph 4a	75	59:41
Ph	Н	Н	CH ₃	$\begin{array}{c} & OH \\ I \\ PhCHCH_2CC \equiv C - TMS \\ I \\ TMS \\ CH_3 \\ \mathbf{4b} \end{array}$	70	68:32
Ph	Н	CH ₃	CH ₃	H ₃ C OH \downarrow \downarrow \downarrow PhCHCHCC \equiv C $-TMS$ \downarrow \downarrow \downarrow TMS CH ₃ 4c	65	53:47
Ph	Н	Н	Н	$\begin{array}{c} & \text{OH} \\ I \\ \text{PhCHCH}_2\text{CHC} \equiv C - TMS \\ I \\ TMS \\ \mathbf{4d} \end{array}$	55	59:41
CH ₃	CH ₃	Н	CH=C(CH ₃) ₂	$\begin{array}{c} OH \\ (CH_3)_2CCH_2CCH=C(CH_3)_2 \\ I \\ TMS \\ C \\ I \\ C \\ I \\ \end{array}$	66	
CH ₃	CH ₃	Н	CH ₂ C(CH ₃) ₂ I TMS	TMS OH $(CH_3)_2CCH_2CCH_2C(CH_3)_2$ $ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	62	

silylated dialkyl and arylalkyl ketones proved to be suitable substrates. In the case of alkynols **4a–d**, mixtures of two diastereomers were obtained with a diastereoselectivity of 53 to 68%. The facial selectivity was interpreted as a result of bulky substituted groups in α - or β -positions, respectively. The results are shown in Table 1.

Experimental

Diethyl ether was distilled from Na/benzophenone under Ar. ¹H and ¹³C NMR spectra were recorded on a Bruker AC-80 NMR spectrometer in CDCl₃. IR spectra were recorded on a Perkin-Elmer spectrometer (Model 883). Mass spectra were obtained with a Fisons TRIO 1000 instrument.

General procedure for the preparation of bistrimethylsilyl alkynols

The silvlated ketone or the corresponding aldehyde (2 mmol) was dissolved in 5 ml of anhydrous diethyl ether, and the mixture was placed in a three-necked flask equipped with a magnetic stirrer and a condenser. Then, 0.23 g (2.2 mmol) of a 56% solution of lithium trimethysilyl acetylide in *THF* was added during 30 min at room temperature under an argon atmosphere. After stirring for 2 h, 0.15 g (3 mmol) of powdered NH₄Cl was added, preferably followed by stirring overnight. Water was added, and the crude residue was extracted with CH₂Cl₂ (2×20 ml). The solvent was evaporated to obtain a crude material. All new products gave satisfactory C and H analyses. The spectroscopic data (13 C, 1 H NMR and IR) of the major diastereomer are shown below.

3,5-Diphenyl-1,5-bistrimethylsilyl-3-ol-1-pentyne (4a; C₂₃H₃₂OSi₂)

Yellow viscous liquid after distillation with a *Kugelrohr* apparatus (oven temperature: 100°C, 150 mm Hg); ¹H NMR (80 MHz, δ , CDCl₃): 0.00 (s, 9H), 0.24 (s, 9H), 2.16 (s, 1H), 2.84 (d of d, J=8.9, 3.8, 1H), 3.38–3.55 (m, 2H), 6.70–7.88 (m, 10H) ppm; ¹³C NMR (20 MHz, δ , CDCl₃): -2.84 (CH₃), 0.15 (CH₃), 32.50 (CH), 45.39 (CH₂), 74.62 (C), 90.67 (C), 108.44 (C), 125.91 (CH), 127.95 (CH), 128.16 (CH), 128.59 (CH), 129.63 (CH), 131.71 (CH), 143.96 (C), 144.56 (C) ppm; IR (film): ν = 3485, 2164, 1250, 845 cm⁻¹; MS: m/z = 380 [M⁺], 177, 73 (base peak).

3-Methyl-5-phenyl-1,5-bistrimethylsilyl-3-ol-1-pentyne (4b; C₁₈H₃₀OSi₂)

Colourless viscous liquid after distillation with a *Kugelrohr* apparatus (oven temperature: 100°C, 150 mm Hg); ¹H NMR (80 MHz, δ , CDCl₃): -0.04 (s, 9H), 0.14 (s, 9H), 1.22 (s, 3H), 2.18 (s, 1H), 2.25–2.75 (m, 3H), 6.90–7.40 (m, 5H) ppm; ¹³C NMR (20 MHz, δ , CDCl₃): -3.12 (CH₃), -0.10 (CH₃), 29.86 (CH₃), 33.39 (CH), 43.28 (CH₂), 70.25 (C), 109.62 (C), 113.62 (C), 124.36 (CH), 127.69 (CH), 128.51 (CH), 143.51 (C) ppm; IR (film): ν = 3421, 2165, 1249, 840 cm⁻¹; MS: m/z = 318 [M⁺], 105, 73 (base peak).

2,4-Dimethyl-5-phenyl-1,5-bistrimethylsilyl-3-ol-1-pentyne (4c; C₁₉H₃₂OSi₂)

Pale yellow viscous liquid after distillation with a *Kugelrohr* apparatus (oven temperature: 100°C, 150 mm Hg); ¹H NMR (80 MHz, δ , CDCl₃): 0.08 (s, 9H), 0.22 (s, 9H), 0.99 (d, J = 4.1, 1H), 1.31 (d, J = 7.1, 3H), 1.58 (s, 3H), 2.13–2.38 (m, 1H), 2.04 (s, 1H), 7.22 (s, 5H) ppm; ¹³C NMR (20 MHz, δ , CDCl₃): -1.17 (CH₃), -0.01 (CH₃), 14.06 (CH₃), 27.61 (CH₃), 38.70 (CH), 44.69 (CH), 72.99 (C), 103.11 (C), 107.70 (C), 124.95 (CH), 127.69 (CH), 130.73 (CH), 141.44 (C) ppm; IR (film): $\nu = 3441$, 2165, 1252, 847 cm⁻¹; MS, m/z = 314 [M⁺-18], 73 (base peak).

5-Phenyl-1,5-bistrimethylsilyl-3-ol-1-pentyne (4d; C₁₇H₂₈OSi₂)

Brown liquid after distillation with a *Kugelrohr* apparatus (oven temperature: 100°C, 150 mm Hg); ¹H NMR (80 MHz, δ , CDCl₃): 0.00 (s, 9H), 0.22 (s, 9H), 1.82–2.0 (m, 1H), 2.13 (s, 1H), 3.72 (m, 2H), 4.02–4.37 (d of d, J = 3.62, 8.51, 1H), 7.15 (s, 5H) ppm; ¹³C NMR (20 MHz, δ , CDCl₃): –2.97 (CH₃), –0.01 (CH₃), 33.57 (CH), 60.67 (CH₂), 78.62 (C), 106.98 (C), 107.86 (C), 124.46 (CH), 127.58 (CH), 128.29 (CH), 142.53 (C) ppm; IR (film): ν = 3397, 2169, 1250, 840 cm⁻¹; MS: m/z = 286 [M⁺-18], 199, 141, 73 (base peak).

6-Methyl-3-(2-methyl-2-trimethylsilylpropyl)-4-hexene-1-yn-3-ol (4e; C₁₇H₃₄OSi₂)

Orange viscous liquid after distillation with a *Kugelrohr* apparatus (oven temperature: 100°C, 150 mm Hg); ¹H NMR (80 MHz, δ , CDCl₃): -0.00 (s, 9H), 0.18 (s, 9H), 0.94 (s, 6H), 1.52 (s, 1H), 1.74 (d, J = 1.37, 3H), 1.86 (s, 2H), 1.92 (d, J = 1.19, 3H), 5.39 (m, 1H) ppm; ¹³C NMR (20 MHz, δ , CDCl₃): -4.46 (CH₃), -0.45 (CH₃), 18.72 (CH₃), 22.88 (CH₃), 26.78 (CH₃), 49.14 (CH₂), 69.79 (C), 73.62 (C), 103.50 (C), 110.33 (C), 131.14 (CH), 134.49 (C) ppm; IR (film): $\nu = 3429$, 2163, 1250, 840 cm⁻¹.

5-Methyl-5-trimethylsilyl-3-(2-methyl-2-trimethylsilylpropyl)-3-ol-hexyne (4f; C₂₀H₄₄OSi₃)

Dark yellow viscous liquid after distillation with a *Kugelrohr* apparatus (oven temperature: 100°C, 150 mm Hg). ¹H NMR (80 MHz, δ , CDCl₃): 0.00 (s, 18H), 0.16 (s, 9H), 1.02 (s, 12H), 2.17 (s, 4H), 2.28 (s, 1H) ppm; ¹³C NMR (20 MHz, δ , CDCl₃): -4.16 (CH₃), -0.48 (CH₃), 23.46 (CH₃), 30.67 (C), 49.99 (CH₂), 73.06 (C), 103.52 (C), 110.34 (C) ppm; IR (film): ν = 3440, 2060, 1250, 839 cm⁻¹.

Acknowledgements

Funds for the purchase of a gas chromatograph by the *Volkswagen-Stiftung*, Federal Republic of Germany, as well as financial support from the *National Research Council of Iran* is acknowledged. We thank Mr. *M. Mojtahedi* for the preparation of starting materials.

References

- [1] Niwa S, Soai K (1990) J Chem Soc Perkin Trans 1, 937
- [2] Wang KK, Liu B, Lu Y (1995) J Org Chem 60: 1885
- [3] Bridges AJ, Fedij V, Turowski EC (1983) J Chem Soc Chem Commun 1093; Kuroda S, Katsuki T, Yamaguchi M (1987) Tertahedron Lett 28: 803
- [4] Pornet J, Damour D, Randrianoelina B, Miginiac L (1986) Tetrahedron 42: 2501; Lautens M, Huboux AH (1990) Tetrahedron Lett 31: 3105; Soai K, Chem Abstr 113: 171485t, JP02 142 742; Lutjens H, Nowotny S, Knochel P (1995) Tetrahedron Asymmetry 6: 2675
- [5] Sinkula AA, Yalkowsky SH (1975) J Pharm Sci 64: 181
- [6] Calas R, Dounogues J, Bolourtchian M (1971) J Organometallic Chem 26: 195
- [7] Dounogues J, Calas R, Bolourtchian M, Biran C, Duffaut N (1973) J Organometallic Chem 57: 55
- [8] Dounogues J, Bolourtchian M, Calas R, Duffaut N, Picard J (1972) J Organometallic Chem 43: 157
- [9] Bolourtchian M, Saednya A (1990) J Science IR Iran 1: 277
- [10] Bolourtchian M, Saednya A (1978) Bull Soc Chem Fr 11: 170

Received April 21, 1998. Accepted (revised) July 29, 1998